Integration of Trivariate Polynomials over Linear Polyhedra in Euclidean Three-dimensional Space
نویسندگان
چکیده
This paper concerns with analytical integration of trivariate polynomials over linear polyhedra in Euclidean three-dimensional space. The volume integration of trivariate polynomials over linear polyhedra is computed as sum of surface integrals in R3 on application of the well known Gauss’s divergence theorem and by using triangulation of the linear polyhedral boundary. The surface integrals in R3 over an arbitrary triangle are connected to surface integrals of bivariate polynomials in R2. The surface integrals in R2 over a simple polygon or over an arbitrary triangle are computed by two different approaches. The first algorithm is obtained by transforming the surface integrals in R2 into a sum of line integrals in a one-parameter space, while the second algorithm is obtained by transforming the surface integrals inR2 over an arbitrary triangle into a parametric double integral over a unit triangle. It is shown that the volume integration of trivariate polynomials over linear polyhedra can be obtained as a sum of surface integrals of bivariate polynomials in R2. The computation of surface integrals is proposed in the beginning of this paper and these are contained in Lemmas 1–6. These algorithms (Lemmas 1–6) and the theorem on volume integration are then followed by an example for which the detailed computational scheme has been explained. The symbolic integration formulas presented in this paper may lead to an easy and systematic incorporation of global properties of solid objects, for example, the volume, centre of mass, moments of inertia etc., required in engineering design processes.
منابع مشابه
Symmetric Gauss Legendre Quadrature Rules for Numerical Integration over an Arbitrary Linear Tetrahedra in Euclidean Three-Dimensional Space
In this paper it is proposed to compute the volume integral of certain functions whose antiderivates with respect to one of the variates (say either x or y or z) is available. Then by use of the well known Gauss Divergence theorem, it can be shown that the volume integral of such a function is expressible as sum of four integrals over the unit triangle. The present method can also evaluate the ...
متن کاملOn edge detour index polynomials
The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.
متن کاملParallel Transport Frame in 4 -dimensional Euclidean Space
In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...
متن کاملAdjacency Algorithms for Cylindrical Algebraic Decompositions of Three and Higher Dimensional Space I: Adjacencies over a Non-nullifying F0,1g Adjacency
Let A be a set of trivariate irreducible integral polynomials and let D be an A-invariant cylindrical algebraic decomposition (cad) of three-dimensional space. This paper presents a new algorithm for determining the interstack adjacencies in D over a given non-nullifying (for A) 0-cell, 1-cell adjacency in the cad D 0 of the plane induced by D. We show that this new adjacency algorithm for thre...
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998